

Pb Pusher

Rotating beam

Harmonic analysis of irradiation asymmetry for cylindrical implosions driven by high-frequency rotating ion beams

A. Bret^{1,2,3} A.R. Piriz^{2,3} and N.A. Tahir⁴

¹ Harvard-Smithonian Center for Astrophysics, Cambridge, USA

² ETSI Industriales, Universidad de Castilla-La Mancha, Ciudad Real, Spain

³ Inst<mark>ituto de Investigaciones Energeticas y Aplicaciones Industria</mark>les, Ciudad Real, Spain

⁴ GSI Darmstadt, Germany

The LAPLAS Experiment

- "Laboratory of Planetary Sciences" (LAPLAS) at GSI
- ▶ HEDM, Metallic Hydrogen...

Rayleigh-Taylor instability during implosion?

Tahir et al., Phys. Rev. E 61, 1975 (2000).

Rayleigh-Taylor instability

- Unstable interfaces during the implosion
- ▶ RTI in elastic-plastic solids (RTI-EPS, Piriz 2009)

Piriz et al., Phys. Rev. E **80**, 046305 (2009)

Irradiation asymmetries

- ightharpoonup Beam time profile ightharpoonup irradiation asymmetries.
- ▶ Planar RTI-EPS in terms of λ , ξ (Piriz 2009)

Irradiation Fourier spectrum - 1D beam

$$dN(\theta) = \sum_{l=-\infty}^{\infty} I\left(\frac{\theta}{\Omega} + \frac{2l\pi}{\Omega}\right) \frac{d\theta}{\Omega} \quad \Rightarrow \frac{dN(\theta)}{d\theta} = \frac{1}{\Omega} \sum_{l=-\infty}^{\infty} I\left(\frac{\theta + 2l\pi}{\Omega}\right) \equiv \rho(\theta)$$

Irradiation Fourier spectrum, 1D beam

Now, Fourier transform $\rho(\theta)$:

$$\widehat{\rho}(s) = \int_{-\infty}^{\infty} \rho(\theta) e^{is\theta} d\theta = \frac{1}{\Omega} \int_{-\infty}^{\infty} \sum_{l=-\infty}^{\infty} I\left(\frac{\theta + 2l\pi}{\Omega}\right) e^{is\theta} d\theta$$

$$\dots = \left(\int_{-\infty}^{\infty} I(u) e^{is\Omega u} du \right) \sum_{l=-\infty}^{\infty} e^{-2il\pi s}$$

Fourier Transform of beam profile,
$$\hat{l}(s\Omega)$$
 "Dirac's comb" = $\sum_{l=-\infty}^{\infty} \delta(s-l)$

$$\widehat{\rho}(l) = \widehat{I}(l\Omega) + \widehat{I}(-l\Omega), \quad \forall \quad l \in \mathbb{N}$$

Harmonic amplitudes of irradiation, from Fourier Transform of beam time profile

Example: 1D beam, parabolic time profile

Bret et al., Phys. Rev. E 85, 036402 (2012)

Irradiation Fourier spectrum, 2D beam

Bret et al., Phys. Rev. E 85, 036402 (2012)

Time profile

Irradiation Fourier spectrum, 2D beam

Bret et al., Phys. Rev. E 85, 036402 (2012)

Stability analysis

"Stable if 1st harmonic is", gives back Piriz 2009

Cancelling the 1st harmonic

- What about the planar approximation?
 - Piriz 2009 RTI-EPS analysis is in planar geometry
 - We are on a circle, radius Rc
 - ▶ Planar OK, for λ << Rc
 - Wavelength of n^{th} harmonic = Rc/n
 - What about n = 1, or 2 or 3?
- ▶ Harmonic amplitude \downarrow with n.
 - In general, n = 1 is the largest amplitude
- ▶ Cancel the 1st harmonic? Possible
 - ▶ Smaller harmonics → Better symmetry
 - **Better** planar approximation. Only needed from $\lambda = Rc/2$

Cancelling the 1st harmonic

The 1st harmonic reads H1=
$$\int_{-T/2}^{T/2} I(t) \cos(\Omega t) dt \xrightarrow{\Omega \to \infty}$$
 0

- ▶ When oscillating, ∞ number of Ω 's cancel it.
- **Example:** 1D parabolic time profile

$$H_1 = 0$$

$$\frac{\Omega T}{2} = \tan \frac{\Omega T}{2}$$

$$\Omega T/2 = 4.493,$$
 "Magic" ΩT 's
$$= 7.725,$$
 $\forall k \in \mathbb{N}$

$$= 10.904,$$

$$\vdots$$

$$= (2k+1)\frac{\pi}{2} - \frac{1}{(2k+1)\pi/2}$$

With these Ω T's, H1=0

Bret et al., Phys. Rev. E **85**, 036402 (2012)

Conclusions

- RTI in elastic-plastic solids is an issue for LAPLAS
- Growth % on wavelength & amplitude (Piriz 2009)
- Asymmetries excited by the beam time profile
- ▶ 1D beam: Harmonic amplitudes from the Fourier transform of the beam time profile
- ▶ 2D : Same, times a form factor ~ 1 for R_{beam} << $R_{deposition}$
- ▶ Problem: Planar RTI analysis dubious on circle for $\lambda = R$, + 1st harmonic too strong.
- ▶ Cancel 1st harmonic. Amplitude = oscillating integral.
- Infinite numbers of "magic" Ω T's work.
- ▶ Better symmetry + RTI analysis more reliable.

Cancelling the 1st harmonic

$$H_1 = 0$$

$$\frac{\Omega T}{2} = \tan \frac{\Omega T}{2}$$

